
SCALING TO MEET THE ONLINE DEMAND IN SOFTWARE ENGINEERING

Kevin A. Gary, 1,* Ruben Acuna, 1 Alexandra Mehlhase, 1 Robert
Heinrichs, 1 & Sohum Sohoni 2

1 School of Computing, Informatics, & Decision Systems Engineering, The Ira A. Fulton
Schools of Engineering, Arizona State University, Tempe, Arizona, USA
2 Department of Electrical and Computer Engineering, Milwaukee School of Engineering,
Milwaukee, Wisconsin, USA

*Address all correspondence to: Kevin A. Gary, School of Computing, Informatics, &
Decision Systems Engineering, The Ira A. Fulton Schools of Engineering, Arizona State
University, Tempe, AZ 85281, USA, E-mail: kgary@asu.edu

Arizona State Universityʼs bachelor of science in software engineering is the first
Accreditation Board for Engineering and Technology (ABET) accredited software
engineering program offered in an online modality. ASUʼs online software engineering
program has experienced rapid growth, to over 1000 students in a 5-year span. The
programʼs design is the same as the on-campus offering, featuring a unique curriculum
centered on a professional spine comprised of team-oriented project-based learning
courses. The scale of the program and its growth, combined with a hands-on applied
learning approach, creates challenges that have mandated innovative and adaptable
processes to be successful. Specifically, the faculty have led a three-year effort on
pedagogical innovations and internal quality process improvements to address unique
aspects of online software engineering education delivery. In this paper we will present the
evolution of the online program and the innovations required to support scale and growth
while producing industry-ready software engineers. These innovations have resulted in an
upward trend in student satisfaction, reversing a prior three-year downward trend from the
inception of the online program.

KEY WORDS: software engineering education, online, education technology, software
tools, pedagogy, project-centered learning, experiential learning

International Journal on Innovations in Online Education 4(1) 2020

2377-9527/20/$35.00 © 2020 by Begell House, Inc. www.begellhouse.com

1. INTRODUCTION
Online engineering education presents unique challenges. Todayʼs engineer must design
robust solutions to complex problems in team-oriented environments. While software
engineering does not have as many hardware requirements as most other engineering
majors, it does have unique challenges due to a heavy reliance on software tools,
popularity of agile methods, lack of tangible (tactile) artifacts, and emphasis on time-to-
market. Further, software engineering is a popular career track due to the prevalence of
software in society and a positive job outlook. Innovations in the BSSE at Arizona State
University have directly addressed the challenges of scaling online software engineering
education in the face of a popular and rapidly expanding program through the innovative
application of technology and a focus on quality process improvement.

Software engineering is a unique professional engineering discipline in a number of ways.
The primary artifacts are not tangible (Brooks and Bullet, 1987), and the overriding
pressure on software businesses is usually time-to-market. Software engineering projects
have historically been known to suffer from budget and time overruns, and as software
plays an increasingly important role in the technologies society relies on every day, they
are also susceptible to high-profile catastrophic system and security failures. The fast-
paced, ever-shifting software technology landscape creates unique engineering
constraints which also filter down to software engineering educators as they train the next
generation of engineers.

Software engineering is a growth discipline. The U.S. Bureau of Labor and Statistics
outlook reports software development as a high-growth occupation (25.6%, 2008–18), with
the third highest median annual wage ($103K) (BLS, 2018). Media reports (e.g., US News
and World Report, 2020) regularly cite it among the most rewarding and well-paid
professions. Software engineering is seen as a fast-paced and emerging discipline (by
historical comparison to traditional engineering). In the past two decades, software
engineering education has grown to an established community with exposure at major
conferences such as SIGCSE, ICSE, CSEET, FSE, FIE, and ASEE. The late 1990s and
early 2000s saw a particular flurry of activity culminating in the ACM/IEEE
recommendations for software engineering curriculum (ACM & IEEE, 2004, 2015) and the
Software Engineering Body of Knowledge for professionals (Bourque and Fairley, 2014).

While software engineering (SE) is seen as one of several research subdisciplines under
the umbrella of computing sciences, undergraduate degree programs are evaluated under
the Engineering Accreditation Commission (EAC), not the Computing Accreditation
Commission (CAC), by the Accreditation Board for Engineering and Technology (ABET).
The intersection of engineering and computing foundations has several practical
implications for software engineering degree programs. SE programs are typically far more

Gary et al.

International Journal on Innovations in Online Education

applied and industry-focused than most other subdisciplines in computing sciences and
require an engineering approach with an emphasis on a measurable design process. Most
students in SE programs in the U.S. complete a terminal degree program designed for
graduates to enter the profession instead of continuing to graduate school. This industry
focus, a strong career market, and the practical advantages of completing an online
program with minimal external hardware needs other than a general purpose personal
computing environment make software engineering a fast-growing online degree space.

Arizona State Universityʼs bachelor of science in software engineering is the first ABET-
accredited software engineering program offered in an online modality. ASUʼs online
software engineering program, started in 2014, has grown from zero to 1,076 students in a
5-year span (Fig. 1) while keeping roughly the same number of faculty. The program
features a unique curriculum centered on a professional spine comprised of team-oriented
project-based learning courses. The scale of the program and its growth, combined with a
hands-on applied learning approach, creates challenges in delivery that have required
innovative and adaptable processes to be successful. Specifically, the faculty have led a
three-year effort on pedagogical innovations and internal quality process improvements to
address  unique  aspects  of  online  software  engineering  education  delivery.  In  this  paper
we  present  the  evolution  of  the  online  program  and  the  innovations  required  to  support
scale  and  growth  while  producing  industry-ready  software  engineers.  This  history  will  be

FIG. 1: The rate of enrollment growth in ASUʼs BSSE online degree program. The program
started in 2014, the 2013–14 academic year numbers reflect recruiting numbers.

Online Demand in Software Engineering

Volume 4, Issue 1, 2020

supported by analysis drawn from formal and informal student feedback instruments over
time. We conclude with ideas on how to be successful going forward, and lessons for all
engineering programs that may soon venture into the online space.

2. ONLINE ENGINEERING PROGRAMS
More and more students are taking online classes worldwide, either in the form of massive
open online courses (MOOCs) or as part of regular coursework at a higher-education
institution. The number of students enrolled in online courses at public institutions in the
US has been rising annually, and it is clear that online education is now part of the
mainstream educational experience in the United States. Data released by the U.S.
Department of Education showed that in 2016, online enrollments dropped in for-profit
organizations and gained in nonprofit institutions like Western Governors University and
Arizona State University (Lederman, 2018). According to the report, about 30% of
undergraduate students and 36% of graduate students in the US were enrolled in at least
one online course in 2016, and at least two-thirds of these students were enrolled in public
institutions of higher education (i.e., not at for-profit institutions). The number of students
enrolled in online courses at public institutions in the US has been rising annually, and it is
clear that online education is now part of the mainstream educational experience in the
United States.

According to data on the US News and World report website (2019), as of September
2019, there are 367 US institutions that offer undergraduate programs online, of which 299
offer programs that are 100% online. Of the 367 institutions, 31 offer some stream of
engineering degrees online, 21 of which are 100% online; 13 institutions offer computer
science bachelorʼs degrees online (12 of which are 100% online); and 2 offer software
engineering bachelorʼs degrees, both offering them 100% online.

Although a body of knowledge exists on teaching and learning online, researchers (Lack,
2013; Means et al., 2009; Wu, 2015; Beetham and Sharpe, 2020) have identified a lack of
dependable research literature on online education from the perspective of pedagogy and
the scholarship of teaching and learning.

Different aspects of online learning need to be explored in more detail within specific
settings (Means et al., 2014, p. 35), and there is a clear need for moving away from broad
(often promotional) claims about the benefits of online education and focusing on rigorous
research to identify and study the aspects of online education that provide advantages to
students. Through this paper, the authors hope to provide such details related to
pedagogical innovations in the context of online learning and their benefits to students.

Gary et al.

International Journal on Innovations in Online Education

3. BACKGROUND: ASUʼS SOFTWARE ENGINEERING DEGREE PROGRAM
The bachelor and master of science in software engineering (BSSE/MSSE) degrees at
Arizona State University (ASU) were first offered in 2010. The degree programs were
originally conceived and implemented at ASUʼs Polytechnic campus in recognition of the
industry-focused career track typical of SE degree programs. Up to this time, software
engineering and computer science education efforts focused on content taxonomies and
bodies of knowledge (BOKs) (Bourque and Fairley, 2014; ACM & IEEE, 2013, 2015). Such
taxonomies and BOKs represented an important evolution of software engineering as an
engineering discipline but in isolation led educators to believe content coverage is more
important than pedagogy. A rising trend in engineering programs towards hands-on or
experiential learning (Sheppard et al., 2008; NAE, 2005) produces learners more engaged
than those in traditional lecture-oriented classes. Our programʼs industry focus, combined
with pedagogical ideas emerging in engineering education, influenced a new innovative
design of the curriculum.

The BSSE and MSSE programs moved away from the curricular patterns suggested in the
literature (ACM and IEEE, 2004) and focused on a project-centered delivery of core
content. Instead of lecture-oriented courses, such as Requirements Engineering, Design,
and Verification and Validation followed by a culminating capstone project commonly
found in software engineering curricula, the new degree program design offered a series of
project experiences incorporating these content areas. The design goal was to avoid
disjoint project experiences of the freshman (first-year) project and senior (fourth-year)
capstone (Shepard, 2001) and instead use project-based implementation as the main
delivery mechanism. The Software Enterprise at ASU is an innovative effort to respond to
these challenges using project experiences as the contextual teaching and learning
vehicle. At the course level it defines a delivery structure that integrates established
learning techniques around a project-based contextualized learning experience. At the
degree program level, the Enterprise constitutes a professional spine (Sheppard et al.,
2008), weaving project sequences throughout degree program delivery, integrating against
program outcomes at each year of the major (Gary et al., 2013).

Figure 2 shows the professional spine curricular design pattern of the BSSE at ASU.
Reading from bottom-to-top, 1st- and 2nd-year undergraduate students are exposed to
traditional computing content (CS I&II, Languages, Data Structures and Algorithms), a
freshman engineering design experience (FSE100), math and lab science including
discrete mathematics (not shown),  and a liberal arts foundation through university  general
studies  requirements  (not  shown).  In  the  2nd  semester  of  the  2nd  year,  students  enter
the  Software  Enterprise  project  sequence  (SER216)  and  continue  this  sequence  through

Online Demand in Software Engineering

Volume 4, Issue 1, 2020

FIG. 2: The project spine curricular design of the BS in software engineering at ASU. The
Software Enterprise project sequence courses form the spine, supported by traditional
computing foundations courses and integrating advanced computing concepts in upper-
division years.

degree completion. At each instance, there is a software engineering lifecycle process
emphasis but also an integrative feature based on the advanced computing
(Operating/Computer Systems) and software engineering (Distributed Computing,
Databases) upper-division course requirements. In the 2nd semester of the 3rd and 4th
years, students may choose electives such as Web and Mobile Applications or Embedded
Systems.

Starting in 2014, ASU began offering the BSSE through ASUOnline. The online offering is
exactly the same as the on-campus offering, providing access to the same courses, under
the same program outcomes and major map requirements. This includes the Software
Enterprise project sequence, which is more challenging to deliver in an online environment
(Gary et al., 2017). Since the inception of the online offering, the program has seen rapid
growth (Fig. 1). While there has been an increase in faculty hires, enrollment growth has

Gary et al.

International Journal on Innovations in Online Education

been so rapid that it outpaces teaching capacity growth. The necessity to operate at scale
and deliver a rigorous degree program are the driving forces in the need to innovate with
technology and pedagogy.

In our prior work (Gary et al., 2017) we enumerated specific concerns from the faculty at
the time of inception of the online program in ramping up a large online engineering
degree program. In the ensuing three years the faculty and the administration have taken
aggressive steps to address these concerns and are now focusing on continuous
improvement and excellence in online education. In this transition, we instituted internal
quality process initiatives to promote continuous improvement and emphasized
pedagogical innovations with the targeted application of technology to enhance student
feedback and foster a community of scholars with online students and faculty.

4. QUALITY IMPROVEMENT PROCESSES
In the first three years of the online program offering, the faculty were primarily responsible
for almost all aspects of delivery: recording course content, facilitating interaction and
collaboration, and gathering assessment data for an impending ABET evaluation process.
During this period the initial strategy was to 1) replicate on-campus course offerings online
and 2) rollout course offerings incrementally one year at a time. Both decisions were
significant. Faculty debated a strategy of creating distinct online courses and a distinct
major map (degree plan) due to concerns about the ability to deliver a project-based spine
degree design via the Software Enterprise in an online setting (see previous section).
However, the faculty ultimately decided to replicate the course offerings and major map,
with the exception of a few upper-division electives, as the project-based approach is
considered core to program values. The decision to roll out incrementally (one year at a
time) was seen as a way to amortize the workload and gain early feedback over a period
of time (4 years); however, the rapid increase in enrollment in the program together with
an influx of transfer students forced the faculty to accelerate online course development.
The result was a short period of intense course development of project-based courses with
little opportunity for feedback in the process, nor for the administration to roll out impactful
services institution wide.

As an early adopter of online offerings at ASU, the full range of training, recording, media
editing, and other support services were not fully matured and available to faculty. The
resulting courses were of “good enough” quality. However, later concerns arose around
the scale and adaptability of the online curriculum—How frequently did course content
need to be revised? What supplementary guides needed to exist for different faculty and
adjunct instructors? How can quality and consistency be maintained across all courses?

Online Demand in Software Engineering

Volume 4, Issue 1, 2020

At the end of these years the faculty, and the administration, began to understand online
delivery at scale better. For the administrationʼs part, multiple service offerings were
matured and supported at all campuses; further, the Engineering Deanʼs office created its
own local support structure for online offerings. These changes made instructional
designers, media specialists, and recording studios available locally on the Polytechnic
campus, eliminating the need to travel to a remote campus for such services. Importantly,
a model was created for the periodic refresh of course content—something that is critical
in a fast-moving discipline like software engineering where the tools and even the primary
concepts change more frequently than more mature engineering disciplines.

For the facultyʼs part, the rapid acceleration of online enrollment growth (Fig. 1) led to
concerns about the ability to provide a consistent quality experience for students. While
the first iteration of course development resulted in “good enough” courses, these courses
often employed their own approaches to course navigation, student interaction, rollout of
course content, and collaboration expectations. While these aspects also exist in on-
campus courses, where the “instructor is king,” inconsistencies in online delivery leads to
gross inefficiencies in the student experience. Online students have more difficulty, without
the benefit of a synchronous meeting time and typically with more outside personal and
professional obligations, dealing with the dissonance that comes from having to locate
information and conduct communication with different online tools and navigation
structures.

The program chair for SE formed a special Faculty Working Group (FWG) which evaluated
the online course offerings using a newly created a set of rubrics. The initial set of rubrics
produced by the FWG is given in Table 1, and the detailed findings of the FWG are
presented in Gary et al. (2017). As a growth of the original working group course review
process, the faculty have created a more comprehensive and general course review
process. The aim is to support continuous improvement of the courses within the program,
the interactions between those courses, and how they support program outcomes. This
supported a better understanding of the original implementation of the online program and
resulted in a set of recommendations to the school. However, the fundamental limitation of
the work by the FWG was that it was performed as a single pass to understand the state of
the program, and the specific results collected do not reflect the current program.
Individual courses, as well as the degree pathway, have evolved over time due to program
needs and faculty input, as well as advising input. Another limitation in the FWG process
was treating course development and teaching (an “execution” of a course) as being
intertwined. This is reasonable for an on-campus course. However, due to the growth of
our online program and the desire to use prerecorded materials to scale course offerings,
these aspects of course evaluation may be decoupled. The faculty member responsible for

Gary et al.

International Journal on Innovations in Online Education

overseeing standards in a course (the coordinator), the one responsible for recording
lectures or creating assignments (the developer), and the one responsible for teaching
during a semester (the instructor) may all be different faculty. Furthermore, the program is
moving towards a model of shared course stewardship where, for instance, a course may
contain content developed by several different instructors according to expertise.

TABLE 1: Rubrics for online course shell evaluation. Additional rubrics are specified for
Communication, Instructional Resources / Content Delivery, Academic Integrity and
Quality, Student Support, and Course Administration.

Criteria Missing Developing Accomplished Innovative

LOs (LOs) &
Alignment to

POs (POs)

Measu-
rable

course
LOs

> 75% of
course LOs

not
measurable

> 50% of
course LOs

not
measurable

> 25% of course
LOs not

measurable

< 25% of
course LOs

not
measurable

Course
LO

construc-
tion

Course LOs
not

provided.

> 50% of the
course LOs do

not properly
use suitable

LO
construction
verbs and

levels, such as
Bloomʼs

> 25% of the
course LOs do

not properly use
suitable LO
construction
verbs and

levels, such as
Bloomʼs

< 25% of the
course LOs

do not
properly use
suitable LO
construction
verbs and

levels, such
as Bloomʼs

Measu-
rable

module
LOs

> 75% of
module LOs

not
measurable

> 50% of
module LOs

not
measurable

> 25% of
module LOs not

measurable

< 25% of
module LOs

not
measurable

Module
LO

construc-
tion

Module LOs
not provided
for 75% or
more of the
modules.

> 50% of the
module LOs

do not properly
use suitable

LO
construction
verbs and

levels, such as
Bloomʼs

> 25% of the
module LOs do
not properly use

suitable LO
construction
verbs and

levels, such as
Bloomʼs

< 25% of the
module LOs

do not
properly use
suitable LO
construction
verbs and

levels, such
as Bloomʼs

Course
alignment
with POs

Alignment of
course LOs
to POs not
provided

> 50% of
course LOs do

not align to
POs; either
missing or
incorrectly
specified

> 1, but < 50%
of the course

LOs do not align
to POs; either

missing or
incorrectly
specified

All course
LOs align to

POs (present
and correct)

Online Demand in Software Engineering

Volume 4, Issue 1, 2020

Criteria Missing Developing Accomplished Innovative

Module
alignment

with
course

LOs

Alignment of
module LOs

to course
outcomes

not provided

> 50% of
modules have
LOs that do
not align to

course
outcomes;

either missing
or incorrectly

specified

> 1, but < 50%
of the modules
have LOs that
do not align to

course
outcomes;

either missing
or incorrectly

specified

All modules
have LOs
aligned to

course
outcomes

(present and
correct)

Navigation &
Presentation Adhe-

rence to
course-

level
standard
template

Missing any
of Welcome

& Start
Here, Staff,
Schedule, &
Discussion
in upper-left

nav

Links to course
modules

available but
not navigable
in a week-by-
week fashion

Required links
present but

supporting links
to Technology/

Resources,
Announce-
ments, and

Assignments
not present

All links
specified in

previous
categories
present in
the left nav

Course
Schedule

Course
Schedule is
present in

left nav

Schedule
shows a

progression of
content

Week-by-week
schedule shown

in left nav

Schedule of
content

coverage
follows a
topic map

showing how
content is
related to
each other

Adhe-
rence to
module-

level
template

Modules
follow

different
organiza-

tional
schemes,
making it
difficult to

understand
content flow

Modules follow
a consistent

organizational
scheme but
LOs and an

activity
summary for

the module are
not at the top
of the page

Modules follow
a consistent

organizational
scheme with

LOs at the top
of the page

Modules
include a

summary of
the activities

(what a
student

needs to do)
near the top

and may
make use of

adaptive
release
features

Gary et al.

International Journal on Innovations in Online Education

Criteria Missing Developing Accomplished Innovative

Functio-
nality of

tools and
links

Course
contains

broken links
or tools that

render it
unusable

Course links
and tools

functional but
complicated to
use effectively

and detract
from learning

All tools and
links operational

and do not
detract from
instruction

All tools and
links

operational
and enhance
instruction.

Help or tech
support

resources
given for all
tools used
within the

course

LO – learning outcome, PO – program outcome

The software engineering programʼs standing undergraduate program committee (UPC,
which makes recommendations to administration regarding the program and courses)
proposed a revised review process to evaluate courses which has three aspects: 1)
alignment, 2) quality, and 3) consistency. The alignment aspect aims to capture how well
program outcomes decompose to course description and course outcomes, and then
down to course assessments. This serves two important purposes: ensuring the courseʼs
specification is well defined at each level of instructional outcome and ensuring traceability
from program outcomes to assessments. The quality aspect focuses on aspects of the
course related to the experience of both taking and teaching a course. Quality is used to
refer broadly to success in a course: students meet course outcomes after its completion.
From a student perspective, a quality course is one that provides features like course
policies that are clear, instruction that is complete and understandable, assessments that
are aligned to instruction, reasonable workload, reasonable deadlines, useful feedback
from assessments, provides appropriate communication channels, supports accessibility,
and so on. From an instructor perspective, a quality course is that one that provides
features like instructions on how to run a course, a complete set of instruction and
assessment resources, reasonable instructor workload, a grading/TA workload that aligns
with department resourcing, assessments that support measurement of outcomes,
infrastructure to address academic integrity, and so on. The consistency aspect views a
course in terms of reproducibility across semesters, where instructor activities and specific
course content may vary, and with respect to a baseline experience. Courses should
demonstrate reproducible results (e.g., student meeting outcomes) across similar cohorts.
To gain traceability on consistency and provide a pathway for correction, this aspect also
tracks provenance. Although a course may be taught from a standard template, changes
still occur during execution as an instructor responds to the unique cohort. Changes also

Online Demand in Software Engineering

Volume 4, Issue 1, 2020

occur to the standard template. To draw conclusions about the state of courses running in
a semester, the relationship between those courses and the template courses reviewed
must be known.

When reviewing alignment and quality, faculty evaluate the master course shell (an LMS
representation of a course). A master shell represents a standard template for a course
offering that is maintained by a course coordinator and developer. This methodology is
enabled by the online program, which provides a reliable platform to perform course
evaluations, as time for course development is resourced independently of running them,
and each semester generates a set of traceable artifacts (both instructional and
assessment results) which are archived implicitly at low cost-to-faculty time by an LMS.
Reviews on consistency use the course shell associated with each semester, which
contains the additional assessment results. A review is conducted by two faculty members
(typically one with domain experience and one without) and the input of the appropriate
faculty (coordinator for alignment, developer for quality, coordinator and instructor for
consistency) to facilitate accuracy and objectivity. Typically, one aspect of a course is
reviewed at a time, according to a simple process. As an example, we use the following
process for alignment reviews:

1. The course coordinator provides documents (e.g., syllabus, course outcomes to
assignment mappings) to the reviewers (or as links to the master course shell).

2. Two faculty members review the provided document and course shell to fill out a rubric.

3. The reviewers meet with the course coordinator to discuss questions that arose during
the review. Reviewers and coordinator briefly discuss how well the current rubric
captures the course being reviewed and make suggestions for rubric improvement.

4. Based on the findings of the reviewers, a set of improvements may be communicated to
the course coordinator.

5. If significant issues are found, change recommendations are made to the course
coordinator and a follow-up meeting is scheduled to review changes.

6. After the follow-up, if there are still severe issues, the program chair is notified.

The different parts of a course are evaluated using a binary rubric. The rubrics are
lightweight to enable accuracy and ease of evaluation while exposing concerns to external
stakeholders. The result of a review is a completed rubric which is archived with any
additional course documentation collected from the developer. Items within a rubric are
ranked by severity; this enables a summarization and exposure of important information

Gary et al.

International Journal on Innovations in Online Education

collected during a review. The rubric results (consisting of rubric values and rubric
versioning information) are recorded in a course status tracking spreadsheet.

Over time the ability of the recorded reviews decays as courses develop past the state in
which they were reviewed. This may impact both evaluation aspects—alignment and
quality. A course that is being tracked may have its evaluations “expired” by several
mechanisms. For instance, department policy may dictate syllabus content needs to
change (alignment; resulting in the need to update one rubric item) or a course may need
to be refreshed (quality; an entirely new review needs to be performed). In contrast,
consistency reviews do not expire but rather are performed every semester on a sampling
of courses. Deviations between semesters, or from the baseline, are taken as potential
issues with the course.

Another aspect of course reviews are instructor-led reflections based on course data. The
existing process in the SE program is to use faculty course assessment reports (FCARS)
(Estell, 2007). FCARS ask instructors to classify student cohort performance as Excellent,
Adequate, Minimal, and Unsatisfactory, and provide traceability of course modifications
and assessment of course outcomes to program outcomes. The FCAR reporting
instrument was updated to specifically document issues and improvements to online
courses, with an emphasis on student interaction with the course. Additionally, the
standard course evaluation form given to students at the end of each session was
augmented for online students with a section specific to online delivery.

Of course, peer review of course shells and instructor-led self-assessment does not help if
a vehicle is not in place to enact change. In some cases, minor improvements to course
content are handled as part of a course coordinatorʼs typical teaching load. However, more
significant refreshes to content are now part of a regular RFP-style process where course
shells undergo redevelopment at least once per accreditation cycle, and in cases of fast-
moving topics or new content, perhaps more frequently. Further, these evaluations are
used as the basis for requesting special resourcing for certain classes, such as project-
based classes or classes that have demonstrated a significant deficiency or bottleneck in
student retention and success.

This continuous improvement quality evaluation process ensures that online courses are
delivered in a consistent manner no matter who is adding or modifying content and who is
delivering the course. This ensures both quality and flexibility to add instructional
resources at scale. Further, as an ABET-accredited program, it is critically important that
all course offerings remained aligned with program outcomes. With the recent changes to
ABET engineering criteria (ABET, 2018) (Criterion 3 Student Outcomes in particular), the
BSSE program updated program outcomes and needed to align existing and new course
offerings to support these new program outcomes. The quality improvement processes

Online Demand in Software Engineering

Volume 4, Issue 1, 2020

described in this section ensure course offerings remain aligned with program outcomes
even in the face of significant growth.

5. INNOVATIONS TO IMPROVE ONLINE ENGINEERING EDUCATION
The challenges of transitioning an existing engineering program to an online modality we
view in three dimensions. The most obvious dimension that comes to mind as an educator
when moving a degree program online is the effort involved in the transition. In the BSSE
at ASU, this concern is compounded by the project-centric nature of the Software
Enterprise spine and an accelerated delivery timeline (ASU online courses are typically
offered in 7.5-week sessions compared to traditional 15-week semesters for on-campus
delivery). A not as obvious dimension derives from the recognition that online students
need a community just as much, if not more, than on-campus students. The typical online
student, working alone at home, needs to feel connected to the university environment.
Certainly, some of this derives from basic classroom support needs, but we find a deeper
interaction is needed for students to feel connected to peers and the university as a whole,
to allow support for common experiences (and frustrations). Add to this the need to scale
this interaction to over a thousand students, who in the absence of community resort to a
1:many communication model proportional to the student-to-faculty ratio of the program.
The final dimension is a lack of recognition of online education as a core aspect of the
university. Initially, at Arizona State University online delivery was viewed as an “add-on”
by faculty and administration with a simple “record and replay” model assumed by default.
After our first couple of years of online delivery, we quickly found that to be effective, we
had to reexamine our approach to curriculum delivery and student support throughout all
of our processes. This section will present strategic innovations in pedagogy, the targeted
application of technology, and faculty internal quality improvement that we have
implemented to address the essential complexities † of scalability and pedagogical
challenges inherent in online engineering education.

5.1 Pedagogical Innovations
The Software Enterprise (Gary, 2008; Gary, 2009) is an innovative pedagogical model for
accelerating a studentʼs competencies from understanding to comprehension to applied
knowledge by colocating preparation, discussion, practice, reflection, and contextualized
learning activities in-time. In this model, learners prepare for a module by doing readings,
tutorials, or research before a class meeting time. The class discusses the moduleʼs
concepts in a lecture or seminar-style setting. The students then practice with a tool or
technique that reinforces the concepts in the next class meeting. Reflection completes the
cycle, internalizing concepts and validating student expectations, or hypotheses, for the
utility of the concept. Then, students apply the concept in an ongoing team-oriented,

Gary et al.

International Journal on Innovations in Online Education

scalable project and reflect again to (in)validate their earlier hypotheses. The Software
Enterprise is a specific pedagogical instance of Kolbʼs experiential learning cycle (Kolb,
1984).

At the onset of the online program in 2014, the on-campus program was just graduating its
first cohort of students and planning for an anticipated initial ABET accreditation visit in
2015. An immediate concern was whether we could continue to deliver a project-centric
approach to software engineering education, or whether we had to fall back to a more
traditional delivery for online and teach to the same program outcomes or modify the on-
campus delivery to also use a more traditional delivery model. The faculty decided to move
forward online with the same project-centric offering as the on-campus program, as it is
core to our philosophy regarding engineering education as a collaborative endeavor, and
such communication and organization skills are tantamount to the profession. However,
team-based project-centric learning in an online setting presents significant challenges.
The experiential learning model means that student teams face a steady stream of new
content, new practice on the skills presented in that content, project-based development
activities, and reflection. The compressed time period of course delivery (7.5 weeks
instead of 15 weeks) and the asynchronous nature of ASUʼs online model put additional
pressures on this model. Specifically, the model requires significant interaction between
students and between students and instructional staff, and necessitates scalable, rapid
feedback (formative and summative). We have utilized technology to address these
requirements. To elaborate on our innovative applications of technology, the next section
describes the transformation of the most intensive project course in the Enterprise
sequence.

5.2 SER316: Intensive Project-Centric Learning at Scale
SER316, Software Enterprise: Construction and Transition, is the fourth course in the
Enterprise sequence typically taken in the 2nd semester of the 3rd year of the
undergraduate program. Students in this course learn best practices in quality software
construction (unit testing, static analysis, metrics, code reviews, refactoring, etc.) and
transitioning to operation (source code control, change management, build and
deployment processes, release management, etc.). Teams employ the Scrum (Schwaber
and Beedle, 2002) agile methodology as their software development lifecycle process
(SDLP). They are given a relatively large (∼ 23k lines of code, which is large to students at
this level) preexisting codebase for an application and asked to implement new features
and improve internal quality. The past three primary (Spring semester) offerings have had
between 82 and 113 students, typically organized in teams of 4–5 students. Marshaling
this many student teams through an agile process in a 7.5-week period is a significant

Online Demand in Software Engineering

Volume 4, Issue 1, 2020

challenge, and we use it to represent the application of technological innovations in the
software engineering program.

In software engineering, tooling is heavily relied upon for managing software processes
and software artifacts. Individual integrated development environments (IDEs) are typically
a choice preference of individual developers in industry. We require students to use
Eclipse (an IDE) to support integrations of common low-level development practices
through plugins, though this choice has no pedagogical or professional development
import other than efficiency in supporting a common platform at scale. Tools that support
team coordination and communication, source code change management, and software
quality are critical in collaborative professional practice for engineering organizations to
deliver software products of acceptable quality at breakneck speed. Such shared tools are
used by the software development organization as a whole to utilize on all projects. The
primary decision point for choosing these tools is the SDLP employed by the organization,
and the most prevalent SLDP methodology is Scrum, one of the agile family of software
methods that emphasizes speed, collaboration, and reacting to change. The BSSE
program was an early adopter in academia of agile methods and has evolved the
collaborative project support tools it requires students to use based on Scrum.

To support project teams in the Enterprise pedagogical model in SER316, we have
adopted a number of off-the-shelf software engineering (OTS-SE) tools and developed
several custom solutions. The OTS-SE tools should represent modern industry practice
but also support open integration and data reporting through programmatic interfaces
(APIs). The OTS-SE tools we currently include are Eclipse and associated plugins for skill
practice, Git/GitHub for source code control, Taiga for Scrumboard ‡ support, and Travis-CI
for continuous integration and testing. We created custom tools that push/pull from the
various OTS-SE APIs for features such as team project formation, continuous formative
feedback, and autograding of certain project rubrics.

For team project formation, we initially employed the CATME platform from Purdue
University (Layton et al., 2010). However, CATME is a closed platform with no open API
access that switched to a license subscription model, so we created a custom tool called
Nicest (Gary et al., 2018) and recently scripted a new version that incorporates more
information regarding online students, as scheduling based on work commitments and
time zones has become the predominant complexity factors. We ask students to submit a
survey with information about their knowledge, time zone, available times, and for
preferences who they would like to work with and who they would prefer not to work with.
Our tool assembles this data and sorts students by time zone and preference so the
forming of groups can be partially automated. Due to sensitivity to particular student
situations (students in the military, students on individualized learning plans, etc.), manual

Gary et al.

International Journal on Innovations in Online Education

student assignment to teams is still performed at the end. After teams are formed, private
GitHub repositories and an initial Taiga Scrumboard is created for each project instance by
a push to the respective APIs through our tool. It sets the master branch on GitHub as
protected, so code reviews are needed before a merge is allowed and creates an initial
sprint on the Scrumboard with some user stories (agile software requirements) for the
students to get started. This gives the students the correct tools to get going in the project
and takes away the burden of the instructor to set things up manually. Through this team
project formation tool this one-time provisioning process happens quickly and at scale for a
large number of teams.

The time pressures and scale of the online program make providing frequent formative
and graded feedback challenging. We have adopted an approach we refer to as
continuous assessment (Gary and Xavier, 2015; Ghiatău et al., 2011), emphasizing the
need for both formative and summative feedback “in-time” so students may incorporate
this guidance into present iterations of the Enterprise experiential cycle (Crisp, 2007). For
on-campus instances of SER316 and other project courses, class time is reserved for
teams to meet and for the instructional staff to informally meet with teams to offer guidance
(formative) and to provide more formal review milestones which are scored (summative).
Only minor parts of this process may be replicated online, for example, short YouTube
video presentations for formal review milestones. More critically, it is very difficult to
provide timely formative feedback to guide students and teams through the context-
oriented application of new software construction skills. We view this formative feedback
as essential to deeper understanding of the engineering process, where sound
engineering judgment is often applied to determine the best among a number of possible
actions. Software engineering teams are continuously faced with the question of “How
much of X do I perform to ensure sufficient quality in the face of time pressures?” where X
is a quality injection practice, such as code reviews, unit testing, or refactoring. We view
this as somewhat unique to software engineering practice compared to other engineering
disciplines, where quality specifications on “tangible” deliverables may be expressed more
exactly as quantifiable constraints. Teaching students how to make professional software
engineering judgments in such a context is a critical learning outcome of our degree
program.

We have iterated over the design and implementation of custom tools to assist with
(primarily) formative and summative feedback in project-centric courses. Descriptions of
previous iterations of some of these tools have been published under the Continuous
Assessment Platform (Gary and Xavier, 2015; Xavier et al., 2016; Gary et al., 2018); here
we describe the latest generation of these tools. A GitHub scraper tool shows when
someone in the team committed new or updated code to their Git repository, how many

Online Demand in Software Engineering

Volume 4, Issue 1, 2020

changes s/he made, and the corresponding comments. This gives as a fast and easy
overview if students committed frequently and consistently (as we want for Scrum), and we
see if they are able to write good commit messages and what they have been working on.
Through a link we can go to the commit directly on GitHub and check these artifacts and
enter our own comments. For Taiga, we created a tool in Python that analyzes a teamʼs
Scrumboard and gives us information about the current sprint (agile term for short
iteration). With this tool we get a report on requirements completed (“story points” in agile
terminology), worked on, and not completed, work items created and completed, and
patterns in how these work items change state (Fig. 3). This provides a good overview
about the team dynamic and how well they are applying the Scrum process.

FIG. 3: Example report from the feedback tool. Vertical lines represent different students.
Each horizontal line represents one Task (– Lifetime of a task, red – In Progress, yellow –
In Testing, green – In Done), after each line the US number and task number is presented,
the red number represents the hours the task was In Progress, and the yellow how long In
Testing.

Gary et al.

International Journal on Innovations in Online Education

5.3 Peer and Instructor Communication
A somewhat unexpected consequence of porting a program to an online modality is the
need to foster an extensive online community. Initially our concern was focused more on
producing quality course content than student-student and student-faculty communication
(Alqurashi, 2019). We hypothesize that this is partly due to the prevalence of the graduate-
level, specifically masterʼs programs (including some at ASU), we reviewed.
Undergraduate students require more interaction, and more importantly, a sense of
community (Arasaratnam-Smith and Northcote, 2017; Muljana and Luo, 2019; Hodgson
and McConnell, 2019). The on-campus undergraduate student certainly acquires a
significant amount of process knowledge from peers, and in retrospect we should have
identified this as a concern much earlier.

Initially, faculty used standard communication tools provided by the Learning Management
System (LMS) for the course, namely, email and threaded discussion forums. Email is
problematic in that it fosters a one-to-one communication model between student and
instructor. Threaded discussion forums are better, though they lack a real-time
conversational quality, and many students are reticent to post questions in open forums. In
search of better solutions, the faculty piloted the use of Zoom videoconferencing and Slack
workspaces. Videoconferencing solutions are of limited scale and utility in an online
program that advertises asynchronous delivery, but we found there is a percentage of
students who do like to interact directly with instructional staff for office hours and for
professional mentorship. While there are many videoconferencing solutions on the market,
Zoom was chosen as it scales well with many students in a virtual room at once, enables
screensharing, cloud-based recording, dashboard analytics reporting tools, and an API
that allows for custom data gathering and reporting. Shortly after the SE program piloted
Zoom, ASU decided on Zoom as the videoconferencing platform of choice, acquiring an
institutional license.

Slack has had the greatest impact on student-faculty and student-student communication.
In a previous paper (Mehlhase et al., 2019) we described experiences piloting Slack in the
classroom, as do others in the literature (Cyders and Hilterbrane, 2016; Fulton, 2017;
White et al., 2017). Slack provides online workspaces that can be organized in channels
for different types of conversations. Just as the faculty arrived at a common navigational
pattern for course shells in the LMS, we also arrived at a common set of channels in a
course instance Slack workspace. In this way students can navigate from workspace to
workspace and know which channel to ask what types of questions, and additional
channels may be used to encourage more informal conversations or discuss issues
broader than the course topics, such as professional development questions. We credit

Online Demand in Software Engineering

Volume 4, Issue 1, 2020

the online SE students for introducing Slack, as they created the first online community as
a sanctioned student club and began to invite faculty ad hoc to participate. After a year of
informal utilization of Slack via personal accounts, the SE program piloted the Slack
Enterprise Grid for ASU, which has since adopted the platform for both online and on-
campus communication.

The Slack Enterprise Grid provides some outstanding features, such as channels,
threaded discussions inline, “pinning” responses for later referral, an analytics dashboard,
and an open API for custom data reporting. There are drawbacks, however, such as the
expectation that instructional staff is available 24/7. Another issue with an active Slack
workspace is that it gets really crowded in the channels very fast, which increases the
amount of communication but makes it hard for students to find answers fast. To work
against this drawback, we created a simple app that helps us mark important questions
and answer pairs and move them into a Frequently Asked Questions (FAQ) channel
(Fig. 4).

FIG. 4: A Q&A entry in the Slack FAQ channel showing a question and answer, a link to
the original thread in Slack, and who submitted it and related tags. We also integrated a
voting system so the instructional team can moderate Q&A and students can vote for
items.

Communication is at the heart of team-based project-centered learning and agile software
engineering methods. While most aspects of the Enterprise pedagogical model are
targeted for individual students, the project-based contextual activities are team-based.
Also, our experience with Enterprise courses over more than a decade of practice is that
individual student expectations and reflections are influenced by their teams. Therefore, it
was very important to incorporate Slack as a medium for communication for project-based
teams in the Software Enterprise. For communication in teams we set up Slack private
channels for each team, and one “group general” channel for their project communication.

Gary et al.

International Journal on Innovations in Online Education

The Slack Enterprise Grid has many apps (“bots”) and integrations available, such as
Polls, Daily Standup (a Scrum method daily meeting), and GitHub/Travis-CI/Taiga
integrations to help them stay organized. Another channel “group instructor” is created for
each group in which the team can directly communicate with the instructor, so the whole
team can ask relevant questions and see the answer. This helps the instructional staff to
make sure that the whole team is informed and not just one student out of the team. This
communication has worked really well for our project groups.

Finally, we note that asynchronous communication in the form of short videos on a weekly
basis summarizing common class questions and providing class-wide feedback and
encouragement has also had a positive effect, as reported in Mehlhase et al. (2019).

6. INNOVATION IMPACT
The innovations the software engineering faculty have introduced have shown a
demonstrable difference in the quality of the program online offering. Students have taken
notice. Table 2 shows the year-over-year course evaluations for the degree program, both
overall and just online course offerings. After showing a decline in course satisfaction
during academic years 2014–15 through 2016–17, the evaluation scores since
implementing the quality improvements described in this paper consistently trend up
(academic years 2016–17 through 2018–19). Further, outside of a single semester (Spring
2018), the delta between on-campus and online course evaluation overall scores is
narrowing, suggesting the improvements are addressing systemic challenges in replicating
the traditional college experience. The online components of course evaluations also show
improvement. For online courses, students are asked questions specific to the online
environment and asked to rate the overall online experience. Table 3 shows the
comparisons between the first instances of an online course and the most recent instance.
Again, a sizable increase is shown in each respective semester.

TABLE 2: Summary of course ratings from student course evaluation surveys. Summaries
are presented by Fall and Spring semester for an equitable comparison between courses
and student position in the major map.

Semester Online Delta to on-campus Semester Online Delta to on-campus

Fall 14 3.63 (0.49) Spring 15 3.66 (0.34)

Fall 15 3.26 (0.53) Spring 16 3.6 (0.18)

Fall 16 3.22 (0.6) Spring 17 3.57 (0.19)

Fall 17 3.46 (0.36) Spring 18 3.52 (0.32)

Fall 18 3.58 (0.19) Spring 19 3.75 (0.12)

Ratings decline from the 2014–15 academic year, then mostly increase thereafter

Online Demand in Software Engineering

Volume 4, Issue 1, 2020

TABLE 3: Average online component overall rating score comparison from the first
offering of a course to the most recent

Semester Offerings Rating Semester Offerings Rating Delta

Fall 15 or 16 7 4.07 Fall 18 9 4.21 0.14

Spring 15 or
16 9 3.73 Spring 19 9 3.99 0.26

First offerings included are in the Fall 2015 to Spring 2016 time period as courses were
rolled out incrementally. Most recent offerings were all in the 2018–19 academic year.
Trending data is not given as course refreshes occur at different times, though each

course included has undergone at least one refresh between the first and most recent
offerings.

Of course, online course evaluations are not scientifically rigorous, and these comparisons
have not been controlled for limitations such as the type and experience of instructor, class
size, and other factors. However, we argue it demonstrates consistent improvement
despite variability outside the unitʼs control—enrollment, new technology platforms, use of
different instructors in different semesters. Given the large number of students and the
significant challenges teaching online at scale, we consider these results a success, while
acknowledging there remains room to improve.

We note anecdotally that quality improvements in online delivery have also led to
improvements in on-campus delivery. The continuous process improvement efforts
described in this paper have had a positive effect on all course instances. The rigor of the
evaluation process has improved all three evaluative aspects (alignment, quality, and
consistency). For example, consistency has been improved by ensuring rotating
instructors (we sometimes employ faculty adjuncts to come in and lead a course) cover the
same content and address the same course learning outcomes. Further, the availability of
media assets has enabled several on-campus courses to be “flipped,” making more
efficient use of classroom contact time. Finally, the application of technology to support
formative feedback and better communication benefits all students, not just those online.

We would be remiss for not acknowledging the role of the students themselves in the
quality improvement process. Above we described how the students started using Slack
and introduced it to the faculty; the students have also initiated their own surveys,
recommending, for example, shorter and custom short videos, faster feedback, use of
Slack over discussion forums—all themes discussed in this paper.

Gary et al.

International Journal on Innovations in Online Education

REFERENCES
Accreditation Board for Engineering and Technology (ABET), Criteria for Accrediting
Engineering Programs, accessed September 30, 2019, from https://www.abet.org/
accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2018-
2019/, 2018.

Alqurashi, E., Predicting Student Satisfaction and Perceived Learning within Online
Learning Environments, Distance Ed., vol. 40, no. 1, pp. 133–148, 2019. DOI:
10.1080/01587919.2018.1553562

Arasaratnam-Smith, L. and Northcote, M., Community in Online Higher Education:
Challenges and Opportunities, Elect. J. e-Learning, vol. 15, no. 2, pp. 188–198, 2017.

Association for Computing Machinery & Institute for Electrical and Electronic Engineers
Computer Society, Software Engineering 2004 Curriculum Guidelines for Undergraduate
Degree Programs in Software Engineering, Joint Task Force on Computing Curricula,
2004.

Association for Computing Machinery & Institute for Electrical and Electronic Engineers
Computer Society, Software Engineering 2014 Curriculum Guidelines for Undergraduate
Degree Programs in Software Engineering, Joint Task Force on Computing Curricula,
2015.

Association for Computing Machinery & Institute for Electrical and Electronic Engineers
Computer Society Joint Task Force, Computer Science Curricula 2013, 2013.

Beetham, H. and Sharpe, R., Eds., An Introduction to Rethinking Pedagogy, in Rethinking
Pedagogy for a Digital Age, New York: Routledge, 2020.

Bourque, P. and Fairley, R.E., Eds., Guide to the Software Engineering Body of
Knowledge, Version 3.0, IEEE Computer Society, 2014.

Brooks, F.P. and Bullet, N.S., Essence and Accidents of Software Engineering, IEEE
Comput., vol. 20, no. 4, pp. 10–19, 1987.

Bureau of Labor and Statistics, Employment Outlook 2018–28, accessed September 30,
2019, from http://www.bls.gov, 2019.

Cockburn, A., Agile Software Development: The Cooperative Game, London: Pearson
Education, 2006.

Crisp, B.R., Is It Worth the Effort? How Feedback Influences Studentsʼ Subsequent
Submission of Assessable Work, Assess. Eval. Higher Ed., vol. 32, no. 5, pp. 571–581,
2007.

Cyders, T. and Hilterbrane, A., Classroom Integration of the Slack Team Collaboration
Tool, in Proc. of the 2016 National Capstone Conf., Columbus, OH, June 2016.

Online Demand in Software Engineering

Volume 4, Issue 1, 2020

Estell, J.K., Streamlining the Assessment Process with the Faculty Course Assessment
Report, Workshop, Frontiers in Education, 2007.

Fulton, L., Slack in Education: A Case Study of Alternative Communication for Groupwork
in Graduate Level Online Education, in Proc. of Society for Information Technology and
Teacher Education Int. Conf., Savannah, GA, pp. 1458–1463, April 2017.

Gary, K., The Software Enterprise: Practicing Best Practices in Software Engineering
Education, Int. J. Eng. Ed., vol. 24, no. 4, pp. 705–716, 2008.

Gary, K., The Software Enterprise: Preparing Industry-Ready Software Engineers, in
Software Engineering: Effective Teaching and Learning Approaches, H. Ellis, S.
Demurjian, and J.F., Naveda, Eds., Los Angeles: Idea Group Publishing, 2009.

Gary, K. and Xavier, S., Agile Learning through Continuous Assessment, Proc. of the
ACM/ASEE/IEEE Frontiers in Education Conf. (FIEʼ15), El Paso, TX, October 2015.

Gary, K., Lindquist, T., Bansal, S., and Ghazarian, A., A Project Spine for Software
Engineering Curricular Design, Proc. of the 26th Conf. on Software Engineering Education
and Training (CSEET), 2013.

Gary, K., Sohoni, S., and Lindquist, T., Itʼs Not What You Think: Lessons Learned
Developing an Online Software Engineering Program, Proc. of the 27th Conf. on Computer
and Software Engineering Education and Training (CSEE&T), 2017.

Gary, K., Johnson, T., Murphy, C., and Athreya, R., Agile Teaching and Learning through
Continuous Assessment, Proc. of the Frontiers in Education of Computer Science Conf.
(FECS), 2018.

Ghiatău, R., Diac, G., and Curelaru, V., Interaction between Summative and Formative in
Higher Education Assessment: Studentsʼ Perception, Soc. Behav. Sci., vol. 11, pp. 220
–224, 2011.

Hodgson, V. and McConnell, D., Networked Learning and Postdigital Education,
Postdigital Sci. Ed., vol. 1, p. 43, 2019.

Kolb, D.A., Experiential Learning: Experience as the Source of Learning and Development,
Upper Saddle River, NJ: Prentice Hall, 1984.

Lack, K.A., Current Status of Research on Online Learning in Postsecondary Education,
accessed September 30, 2019, from https://doi.org/10.18665/sr.22463, 2013.

Layton, R.A., Loughry, M.L., Ohland, M.W., and Ricco, G.D., Design and Validation of a
Web-Based System for Assigning Members to Teams Using Instructor-Specified
Criteria, Adv. Eng. Ed., vol. 2, no. 1, pp. 1–28, 2010.

Gary et al.

International Journal on Innovations in Online Education

Lederman, D., Who is Studying Online (and Where), Inside Higher, accessed from
https://www.insidehighered.com/digital-learning/article/2018/01/05/new-us-data-show-
continued-growth-college-students-studying, 2018.

Means, B., Toyama, Y., Murphy, R., Bakia, M., and Jones, K., Evaluation of Evidence-
Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning
Studies, U.S. Department of Education, 2009.

Means, B., Bakia, M., and Murphy, R., Learning Online: What Research Tells Us About
Whether, When and How, Abingdon, UK: Routledge, 2014.

Mehlhase, A., Heinrichs, R., and Gary, K., Effective Use of Slack and Short Video to Scale
Online Learning Communities, Proc. of the Frontiers in Education of Computer Science
Conf. (FECS), 2019.

Muljana, P.S. and Luo, T., Factors Contributing to Student Retention in Online Learning
and Recommended Strategies for Improvement: A Systematic Literature Review, J. Inf.
Technol. Ed.: Res., vol. 18, pp. 19–57, 2019. DOI: https://doi.org/10.28945/4182

National Academy of Engineering, Educating the Engineer of 2020: Adapting Engineering
Education to the New Century, Washington, DC: The National Academies Press, 2005.

Schwaber, K. and Beedle, M., Agile Software Development with Scrum (Vol. 1), Upper
Saddle River, NJ: Prentice Hall, 2002.

Shepard, T., An Efficient Set of Software Degree Programs for One Domain, Proc. of the
23rd Int. Conf. on Software Engineering, pp. 623–632, 2001.

Sheppard, S.D., Macatangay, K., Colby, A., and Sullivan, W.M., Educating Engineers:
Designing for the Future of the Field, San Francisco: Jossey-Bass, 2008.

US News and World Report, The 25 Best Jobs of 2020, accessed January 7, 2020, from
https://money.usnews.com/money/careers/slideshows/the-25-best-jobs?slide=26, 2020.

US News and World Report, Engineering Program Rankings, accessed September 30,
2019, from https://www.usnews.com/education/online-education/bachelors/rankings, 2019.

White, K., Grierson, H., and Wodehouse, A., Using Slack for Synchronous and
Asynchronous Communication in a Global Design Project, in Proc. of the 19th Int. Conf. on
Engineering and Product Design Education, Bristol, UK, pp. 346–351, September 2017.

Wu, D.D., Online Learning in Postsecondary Education: A Review of the Empirical
Literature (2013–2014), 2015. DOI: doi.org/10.18665/sr.221027

Xavier, S., Murphy, C., and Gary, K., A Student Activity Dashboard for Ensuring Project-
Based Learning Compliance, Proc. of the Annual Conf. of the American Society for
Engineering Education (ASEE), 2016.

Online Demand in Software Engineering

Volume 4, Issue 1, 2020

NOTES:
† Yes, a reference to Brooksʼs classic delineation of accidental versus essential complexity (Brooks, 1987).↩

‡ A Scrumboard is a process management tool used as an “information radiator” (Cockburn, 2006) for an agile team.↩

Gary et al.

International Journal on Innovations in Online Education

